

Get

 every one in the picture
Summary measures of mortality Life expectancy and life tables

Data analysis and Report writing workshop for Civil registration and vital statistics data.

Recall age-specific death rates

Source: Institute for Health Metrics and Evaluation database
Graph from: University of Queensland Health
Information Systems
Knowledge Hub's Mortality statistics: a tool to improve
understanding and quality

Age group	Male deaths	Male population	Male Age- specific moratlity rates
0	40	3045	13.1
$1-4$	10	11230	0.9
$0-4$	50	14275	3.5
$5-9$	3	15130	0.2
$10-14$	7	15780	0.6
$15-19$	17	15870	1.1
$20-24$	28	15800	1.8
$25-29$	25	13490	1.8
$30-34$	27	12650	2.1
$35-39$	39	13080	3.6
$40-44$	50	13920	3.6
$45-49$	103	12700	8.1
$50-54$	102	11900	8.6
$55-59$	143	9110	15.7
$60-64$	172	6240	27.6
$65-69$	233	4290	54.3
$70-74$	206	3000	68.7
$75-79$	214	1890	113.1
$80+$	506	1570	322.5
Total	1925	180695	

Summarizing the Mortality Level in a Population

- Each age-specific death rate is largely independent of age structure.
Ideally, we would also like to have summary measures of mortality across broad ages that are independent of age structure.

That is what the life table does for us. A life table presents the probability of a person dying at each age
For instance, a key summary measure it provides is life expectancy at birth.
We compute these indicators AFTER we have adjusted our death registration data for incompleteness

- Advantages of such measures:
- Independent of age structure (unlike CDR)
- Intuitive interpretation relates to the individual lifespan

INTRODUCTION

- Period analysis - analysis of a population:
- for an interval of time (eg, the year 2000 or the period 2000-2004), or
- at a point in time (eg, a Census in 2000)

Cohort analysis

- Birth cohort (eg, people born in 1990)
- Usually calculated separately by gender

The period life table

- Constructed from mortality rates from different age groups observed during a given time period (e.g. a year)
- Provides a cross sectional view of mortality and survival experience
- Illustrates "...what would happen to a cohort if it were subjected for all of its life to the mortality

- It is what we call a synthetic or hypothetical cohort
- A more practical and useful tool for mortality analysis

The complete life table

Is built up from data on deaths and population at each single year of age

The abridged life table

Reason for abridged life tables is that there are usually insufficient numbers to do an analysis by year by gender. Based on assumption that death rates are similar at neighbouring ages Uses deaths rates calculated from groups of ages
Most common groupings are $<1,1-4$, $5-9, \ldots 95-99,100+$ (others are also used)

Where populations are small - ten year groupings used

Do we have enough data?

Are there results in our first and last age groups?

- Is there more that 5000 person years of data included?
- Do our graphs of age-specific mortality have a clear shape?

Calculating abridged life tables

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	\mathbf{N}_{x}	$d_{(a d j)}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	T_{x}	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.28
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	77.66
5-9	5	0.5	687357	88.0	0.00013	0.00064	0.99936	99407	64	496876	7330727	73.74
10-14	5	0.5	719258	86.0	0.00012	0.00060	0.99940	99343	59	496569	6833851	68.79
15-19	5	0.5	726266	446.0	0.00061	0.00307	0.99693	99284	304	495659	6337282	63.83
20-24	5	0.5	747927	621.1	0.00083	0.00414	0.99586	98980	410	493873	5841623	59.02
25-29	5	0.5	708376	695.1	0.00098	0.00489	0.99511	98570	482	491642	5347750	54.25
30-34	5	0.5	743386	799.1	0.00107	0.00536	0.99464	98087	526	489121	4856108	49.51
35-39	5	0.5	759543	957.1	0.00126	0.00628	0.99372	97561	613	486275	4366987	44.76
40-44	5	0.5	762579	1344.1	0.00176	0.00877	0.99123	96949	851	482616	3880712	40.03
45-49	5	0.5	741136	1788.2	0.00241	0.01199	0.98801	96098	1152	477609	3398096	35.36
50-54	5	0.5	679033	2250.2	0.00331	0.01643	0.98357	94946	1560	470827	2920487	30.76
55-59	5	0.5	636723	3393.3	0.00533	0.02630	0.97370	93385	2456	460787	2449660	26.23
60-64	5	0.5	496072	4223.4	0.00851	0.04168	0.95832	90930	3790	445173	1988872	21.87
65-69	5	0.5	385226	5691.6	0.01477	0.07124	0.92876	87140	6208	420178	1543699	17.72
70-74	5	0.5	302778	8290.8	0.02738	- 0.12814	0.87186	80932	10371	378731	1123522	13.88
75-79	5	0.5	252158	11004.1	0.04364	0.19674	0.80326	70561	13882	318100	744791	10.56
80-84	5	0.5	166000	11358.2	0.06842	- 0.29214	0.70786	56679	16558	242000	426691	7.53
≥ 85	14	0.5	104337	14453.5	0.13853	1.00000	0.00000	40121	40121	184691	184691	4.60

Definition: age-specific death rates

$M_{x}=\underline{\text { Deaths during the year of persons between age } \mathrm{x} \text { to } \mathrm{x}+\mathrm{n}}$
 Population aged x to $\mathrm{x}+\mathrm{n}$
 Difference between
 M_{x} - population based rate and
 $q_{x}:-$ cohort rate (probability)

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	\mathbf{N}_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	$\mathbf{p}_{\text {x }}$	I_{x}	d_{x}	L_{x}	T_{x}	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	

Definition: the probability of dying between ages x and $x+n$

$$
{ }_{n} q_{x}=\frac{n *{ }_{n} M_{x}}{1+n\left(1-{ }_{n} a_{x}\right)_{n} M_{x}}
$$

where ${ }_{n} a_{x}$ is the proportion of the interval lived by those who died

Age interval	Years in interval	Linearity Adjust- ment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	Tx	$\mathbf{e x}_{\mathbf{x}}$
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	77285	

Approximating q_{x}

- Accuracy depends on assumption that those who die in the year live, on average, half a year during that year
- Fairly accurate for all ages except the very young (tend to be concentrate in early part of first year) and the very old
- This fraction usually denoted by a_{x}
- It is convention to use ${ }_{1} \mathrm{a}_{0}=0.1$ in low mortality countries and 0.3 in high mortality countries
- For all ${ }_{4} a_{1}$, use 0.4

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	N_{x}	(adj)	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	Tx	x
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	x
1-4		0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	

- The last age group ($\mathrm{q}_{\mathrm{x}_{+}}$) is open ended
- All those alive at the beginning of the last age interval must die eventually
- $\mathrm{q}_{\mathrm{x}+}$ always equals 1

INTHIS WORLD NOTHNG IS CERTAIN BUT DEATH \& TAXES

Age interval	Years in interval	Linearity Adjustmen t	Reported pop/births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expected)	$\begin{gathered} \text { Deaths } \\ (\text { expected) } \end{gathered}$	Years lived in interval	Cumulativ e yrs lived in interval	LE: Life Expectanc y
(years)	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	T_{x}	e_{x}
80-84	5	0.5	166000	11358.2	0.06842	0.29214	0.70786	56679	16558	242000	426691	7.53

Definition: probability of surviving between exact age x and $x+n$

$$
\begin{aligned}
& { }_{n} p_{x}=1-{ }_{n} q_{x} \\
& \therefore{ }_{n} p_{x}+{ }_{n} q_{x}=1
\end{aligned}
$$

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{(\mathrm{adj})}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	Tx	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.
1-4		0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728	

Definition: the number of people alive at exact age x.

Refers to an exact age rather than age interval (unlike other columns in an abridged life table)

The first value, I_{0}, is an arbitrary number called the radix (usually a round number such as 1 , or 1000 , or 100,000)

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	$\begin{array}{\|c\|} \text { Mortality } \\ \text { rate } \end{array}$	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	Tx	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	

Calculating I_{x}

First choose a radix then work down the table using:

$$
l_{x}=l_{x-n} \bullet_{n} p_{x-n}
$$

- For the last (open-ended) interval, the number of persons dying is the same as the number alive at its start

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	Tx	$\mathbf{e x}_{\mathbf{x}}$
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.2
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	

Interpreting I_{x}

I_{x} is an hypothetical number of survivors from a cohort of hypothetical births, assuming these imaginary births were to experience the same age-specific mortality rates as those in the population of interest

- I_{x} bears no relation to the actual number of individuals aged x to $x+n$ in the real population
- The I_{x} value is only meaningful when related to the original radix

Definition: the total number of person-years lived (contributed by those alive and those who died) between exact ages x and $x+n$

Each person who remains alive throughout a specified time interval contributes n years of life

Each person who dies in an interval contributes a fraction of the interval equivalent to ${ }_{n} a_{x} \cdot n$ years

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{(\mathrm{adj})}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	Tx	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.2
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	

Calculating ${ }_{n} L_{x}$

$$
{ }_{n} L_{x}=n\left(l_{x+n}+{ }_{n} a_{x} \cdot n d_{x}\right)
$$

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	P_{x}	I_{x}	d_{x}	L_{x}	T_{x}	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.28
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	77.6

Definition: the total number of personyears lived after age x

- Is obtained by cumulating the ${ }_{n} L_{x}$ function from the bottom (highest age interval) up

- Refers to exact age x, not an age interval

$\begin{gathered} \text { Age } \\ \text { interval } \end{gathered}$	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	p_{x}	I_{x}	d_{x}	L_{x}	Tx	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.2
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	

Definition: expected (average) number of years of life left for a person aged x

- For the I_{x} people alive at age x, the total number of years left for them to live is given by T_{x}
- On average, each of these I_{x} individuals has approximately T_{x} / I_{x} years to live

$$
e_{x}=\frac{T_{x}}{l_{x}}
$$

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	$\mathbf{N}_{\mathbf{x}}$	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	P_{x}	I_{x}	d_{x}	L_{x}	T_{x}	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.28
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	77.6

The average number of years available to a new born is generally referred to as the expectation of life at birth and is given by the ratio:

$$
e_{0}=\frac{T_{0}}{l_{0}}
$$

Age interval	Years in interval	Linearity Adjustment	Reported pop/ births	Adjusted deaths	Mortality rate	Probability of dying	Probability of surviving	Pop surviving (expecte d)	Deaths (expect ed)	Years lived in interval	Cumulative yrs lived in interval	LE: Life Expect ancy
(years)	n_{x}	a_{x}	N_{x}	$\mathrm{d}_{\text {(adj) }}$	m_{x}	q_{x}	P_{x}	I_{x}	d_{x}	L_{x}	T_{x}	e_{x}
<1	1	0.1	141158	678.1	0.00480	0.00478	0.99522	100000	478	99570	7828154	78.28
1-4	4	0.5	531025	153.0	0.00029	0.00115	0.99885	99522	115	397858	7728585	77.6

Model Life Tables

- Age-specific mortality data are not always available - ie, we do not have accurate vital registration data
- Life table of a similar population, such as a neighboring country, can be useful
- Alternatively, we can construct a model life table Model life tables are sets of hypothetical life tables spanning the full range of life expectancies as well as different patterns of age-specific mortality (Rowland 2003: 312)

Model Life Tables

- Ideally, model life tables should:
- Be simple and easy to use
- Adequately capture the range of mortality patterns observed in populations
- Be a good predictor of true underlying death rates

Types of model life tables

1. UN Model Life Tables (1955)
2. UN Model Life Tables for Developing Countries (1982)
3. Coale and Demeny regional (East, North, West South) model life tables $(1966,1983)$
4. Brass Logit Life-table System (1971)
5. WHO Modified Brass Logit System (2003)

Lab 1: Construct a life table

- Use: LifeTableProbDyingUNSW_v3.xlsx
- With the test data, make a pivot tables for deaths by age group for both males and females.
- Input the deaths for males and the male pop
- using ages <1 to 85+ for males
- repeat for females

